Complexin Clamps Asynchronous Release by Blocking a Secondary Ca2+ Sensor via Its Accessory α Helix
نویسندگان
چکیده
Complexin activates and clamps neurotransmitter release; impairing complexin function decreases synchronous, but increases spontaneous and asynchronous synaptic vesicle exocytosis. Here, we show that complexin-different from the Ca(2+) sensor synaptotagmin-1-activates synchronous exocytosis by promoting synaptic vesicle priming, but clamps spontaneous and asynchronous exocytosis-similar to synaptotagmin-1-by blocking a secondary Ca(2+) sensor. Activation and clamping functions of complexin depend on distinct, autonomously acting sequences, namely its N-terminal region and accessory α helix, respectively. Mutations designed to test whether the accessory α helix of complexin clamps exocytosis by inserting into SNARE-complexes support this hypothesis, suggesting that the accessory α helix blocks completion of trans-SNARE-complex assembly until Ca(2+) binding to synaptotagmin relieves this block. Moreover, a juxtamembranous mutation in the SNARE-protein synaptobrevin-2, which presumably impairs force transfer from nascent trans-SNARE complexes onto fusing membranes, also unclamps spontaneous fusion by disinhibiting a secondary Ca(2+) sensor. Thus, complexin performs mechanistically distinct activation and clamping functions that operate in conjunction with synaptotagmin-1 by controlling trans-SNARE-complex assembly.
منابع مشابه
C-terminal complexin sequence is selectively required for clamping and priming but not for Ca2+ triggering of synaptic exocytosis.
Complexins are small soluble proteins that bind to assembling SNARE complexes during synaptic vesicle exocytosis, which in turn mediates neurotransmitter release. Complexins are required for clamping of spontaneous "mini " release and for the priming and synaptotagmin-dependent Ca(2+) triggering of evoked release. Mammalian genomes encode four complexins that are composed of an N-terminal unstr...
متن کاملNpgrj_nsmb_1292 949..958
Complexins constitute a family of four synaptic high-affinity SNARE complex–binding proteins. They positively regulate a late, post-priming step in Ca2+-triggered synchronous neurotransmitter release, but the underlying molecular mechanisms are unclear. We show here that SNARE complex binding of complexin I (CplxI) via its central a-helix is necessary but, unexpectedly, not sufficient for its k...
متن کاملAccessory and Central α-helices of Complexin Selectively Activate Ca2+ Triggering of Synaptic Exocytosis
Complexins, binding to assembling soluble NSF-attachment protein receptor (SNARE) complexes, activate Ca2+ triggered exocytosis and clamp spontaneous release in the presynaptic terminal. Functions of complexin are structural dependent and mechanistically distinct. To further understand the functional/structural dependence of complexin, here we show that the accessory and central α-helices of co...
متن کاملRe-examining how complexin inhibits neurotransmitter release
Complexins play activating and inhibitory functions in neurotransmitter release. The complexin accessory helix inhibits release and was proposed to insert into SNARE complexes to prevent their full assembly. This model was supported by 'superclamp' and 'poor-clamp' mutations that enhanced or decreased the complexin-I inhibitory activity in cell-cell fusion assays, and by the crystal structure o...
متن کاملAlternative zippering as an on-off switch for SNARE-mediated fusion.
Membrane fusion between vesicles and target membranes involves the zippering of a four-helix bundle generated by constituent helices derived from target- and vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). In neurons, the protein complexin clamps otherwise spontaneous fusion by SNARE proteins, allowing neurotransmitters and other mediators to be secreted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 68 شماره
صفحات -
تاریخ انتشار 2010